The Air-Void, a ‘drop-in-place’ retrofit solution for air-free sterilisation

Inefficient air removal – the culprit.

Steam management and boiler operational issues at palm oil mills continue to remain problematic till today and have yet to be satisfactorily resolved. The root cause can be traced to the inefficient method of air removal at the steriliser station.

The Air-Void® has been created specifically to solve the above-mentioned problem of inefficient air removal that is both serious and still prevalent in palm oil mills.

Inefficient usage of process steam arising from employing outdated methods to remove residual air in the steriliser vessel is the main cause of unrelenting problems at palm oil mills, particularly those affecting boiler operation – currently widespread at palm oil mills. Continue reading

New Technological Innovation to Drive Efficiency, Creativity and Profitability at Palm Oil Mills

The Dream Mill

palm-oil-mill-engineer
Can life for palm oil mill Managers and Engineers be (ever) made ‘easy’? Actually, yes. With a solution that is both easy and simple. Just picture this… managers and engineers focusing on mill processes and production matters rather than tending to persistent mill utility issues, thereby enriching their daily working life and enhancing the core business of their company.

Today, technological innovation has given a boost to palm oil mill operations. New technologies are available to re-engineer the design of existing palm oil extraction processes to achieve the above. Continue reading

Re-engineering palm oil mills into centres of energy efficiency

Palm oil mills can unleash renewable energy at enormously high energy efficiency levels arising from the unique characteristics of their operating parameters.

Palm oil mills are in an enviable position to harness renewable energy at very high efficiencies, the potential of which remains largely unrealised.

Palm oil mills generally tend to focus on milling operations. They are predominantly concerned with the core business revolving around the processing of fresh fruit bunches (FFB) and oil extraction rates. However there is a new premise that envisions mills to operate as centres of energy efficiency.

Palm oil mills discharge large amounts of biomass, which is generally regarded as a waste product. The bulk of the FFB mass from the field transported to the mill for processing is discharged as biomass residue. This residue provides a rich source of abundant renewable energy when harnessed at high efficiencies. However, at present the inherent energy potential is neither fully appreciated nor exploited in an appropriate manner. Optimising the harnessing of the renewable energy reduces the carbon dioxide (CO2) emissions of palm oil production, and hence its carbon footprint. Continue reading

Re-ingeniería Molinos de Aceite de Palma en Centros de Eficiencia Energética

Molinos de aceite de palma pueden dar rienda suelta a las energías renovables en niveles altísimos de eficiencia energética derivados de las características únicas de sus parámetros de funcionamiento.

Molinos de aceite de palma están en una posición envidiable para aprovechar la energía renovable a muy altas eficiencias, el potencial de que sigue siendo en gran parte no realizada.

Molinos de aceite de palma en general, tienden a centrarse en las operaciones de fresado. Son predominantemente preocupado con la actividad principal gira en torno a la transformación de los Racimos de Fruta Fresca (RFF) y las tasas de extracción de aceite.  Sin embargo hay una nueva premisa de que prevé molinos para operar como centros de eficiencia energética.

Molinos de aceite de palma descargan grandes cantidades de biomasa, que es generalmente considerada como un producto de desecho. La mayor parte de la masa RFF desde el campo transportado al molino para el procesamiento se descarga como residuo de biomasa. Este residuo proporciona una rica fuente de abundante energía renovable si se las orienta a altas eficiencias. Sin embargo, en la actualidad la energía potencial inherente no es ni completamente apreciado ni explotada de una manera apropiada. Optimizar el aprovechamiento de la energía renovable reduce el dióxido de carbono (CO2) de la producción de aceite de palma, y de ahí su huella de carbono. Continue reading

Merekayasa ulang Pabrik Kelapa Sawit Menjadi Pusat Efisiensi Energi

Pabrik Kelapa Sawit dapat menghasilkan energi terbarukan dengan tingkat efisiensi yang luar biasa besar timbul dari karakteristik unik dari parameter operasinya.

Pabrik kelapa sawit (PKS) berada pada posisi yang menguntungkan untuk memanfaatkan energi terbarukan dengan efisiensi yang sangat tinggi, potensi yang sebagian besar masih belum direalisasi.

PKS umumnya cenderung fokus pada operasi pengolahan. Pada umumnya perhatian mereka ada pada seputaran mengolah tandan buah segar (TBS) dan rendemen minyak. Namun ada kenyataan baru yang menyatakan bahwa pabrik kelapa sawit dapat beroperasi sebagai pusat efisiensi energi.

PKS menghasilkan sejumlah besar biomassa, yang umumnya dianggap sebagai limbah. Sebagian besar massa TBS yang diangkut dari lapangan diolah di PKS dihasilkan sebagai sisa produksi (biomassa).

Sisa ini mengandung sumber energi terbarukan yang melimpah jika dimanfaatkan dengan efisiensi tinggi. Namun, saat ini potensi energi yang ada pada biomass tersebut belum sepenuhnya dihargai atau dimanfaatkan dengan cara yang tepat. Pemanfaratan energi terbarukan secara optimal dapat mengurangi emisi karbon dioksida (CO2) produksi minyak kelapa sawit, dan juga jejak karbonnya. Continue reading

Surprise Blessings from Climate Change – a turnaround for the image of and new opportunities for the Palm Oil industry

The new blessings of climate change for the palm oil industry.

Climate change is bringing new opportunities and benefits to the palm oil industry – strengthening the bottom line and nudging it towards a more positive image.

More often than not, climate change news is depressing. But one news is bringing cheer to the palm oil industry and the world at large. Climate change supporters continue to highlight the shortcomings about the practices of the palm oil industry but this has not deterred the world demand for CPO from growing. Ironically today it is the same “climate change” call, that has (surprisingly) turned the industry into a beacon of hope. Among a barrage of measures climate change is driving is for traditional fuels to be replaced, at least partially, by biofuels as a source of clean energy to reduce carbon emissions. And it is this growing world demand for clean energy via the use of biofuels that has today made the world realize that the palm oil industry is not all bad news. Continue reading

Palm Oil Mills, in the Perspective of National Resource Efficiency

 

Biomass Residue and Renewable Energy, Resource Efficiency at Palm Oil Mills

palm oil mill Apart from palm oil, biomass residue and the renewable energy derived therefrom are among two important products, sometimes overlooked, of palm oil mills in the oil palm industry. It is imperative that palm oil mills are recognised in the context of national resource efficiency for efficient utilisation of these products in order to maximise their contribution to the industry and national economy.

Despite the energy-efficient cogeneration technology currently employed at palm oil mills, most of the prime biomass residues at palm oil mills is presently consumed merely to provide heat and power to its processes. A truly energy-efficient design of a palm oil mill incorporating readily available innovative technologies can reduce its biomass residue consumption to less than half of the present consumption. The biomass thusly saved could be utilised elsewhere for useful purposes. In addition to large quantities of surplus prime biomass conserved at the mill for export, surplus electricity can be more efficiently generated within the mill for export to the grid, where grid access is available. Continue reading

National Policies on Renewable Energy Utilisation and Abatement of Global Warming

Malaysia’s Policies on Renewable Energy and Global Warming that Went Awry

sustainable energy

The Fifth-Fuel Policy under the Eight Malaysia Plan (2001- 2005) identified renewable energy sources as the fifth-fuel to be included into the national energy mix and more specifically, biomass residue from the palm oil mills as a major renewable energy resource. The policy pushed for optimising the use of renewable energy resources as a way to achieve maximum reduction of carbon emissions in the atmosphere. The fifth-fuel policy delved further to encourage co-generation as a suitable method to extract electricity and usable heat from biomass resources, mainly for in-house consumption. In this respect, the implementation of the policy faulted on two accounts:

  1. Firstly, by narrowly interpreting the policy direction as renewable for electricity generation the other important aspect, i.e. the simultaneous production of usable heat for in-house use was disregarded; and
  2. As a result of (1) above, standalone biomass-based power plants incinerating empty fruit bunches (EFB) remains from palm oil mills were promoted. This led to the second neglect, namely, prime biomass resource in the palm oil mills, which comprises mesocarp fibre and palm kernel shell that has tremendous renewable energy potential. The neglect of this prime biomass resource continues till today resulting in leaving their inherent renewable energy potential largely underutilised.

A downside to the two neglects mentioned above is that the standalone-small-scale-low-efficiency-electricity-only power plants burning empty fruit bunches, as forecast, demonstrated to be financially not viable and this unattractive economics continues to hamper biomass renewable energy development in Malaysia till today.
Continue reading

Selection of Sterilizer Technology for Energy Efficient Operation of Palm Oil Mills

Sterilizer Technology Affects the Overall Energy Efficiency of Palm Oil Mills

The type of sterilizer technology utilised greatly affects steam and power consumption for, and efficiency of, the sterilization process. With the growing demand for energy efficiency at palm oil mills, the selection of sterilizer is based mainly on its relevance to steam and power consumption because this will influence the overall energy efficiency of the palm oil extraction process.

palm-oil-mill-energy-efficiency

The efficient use of energy at a palm oil mill is a major factor that reduces the carbon footprint of palm oil and impact on global warming trends and thus helps prevent climate changes. Utilizing biomass residues generated from the palm oil production process for its energy yield efficiently and productively further determines carbon emissions levels and the sustainability of palm oil production. Continue reading

Carbon Footprint of Palm Oil and the Palm Biodiesel Dilemma

There is more to Malaysian B5 biodiesel than meets the eye!

Believe it or not. Read on…

carbon-footprint

Palm Biodiesel Is Not Clean or Green! The Malaysian B5 Biodiesel program is set to release even more carbon dioxide into the atmosphere than petroleum diesel intensifying global warming. But, it need not be. Tech savvy solutions are already available to confront the Carbon Footprint of Palm Oil, a base feedstock for the Biodiesel, and preserve the environment against global warming effects but the will to adopt appears to be entirely wanting. Continue reading