Piercing the Veil of Zero Waste: What does it (really) mean for the Palm Oil Industry?

zero-waste

Experts may differ on the definition of ‘Zero Waste’ but one thing they all agree upon is that it means different things to different industries.

When we were children growing up, elders used to say, “Waste not, want not.” Meaning the wise use of one’s resources will keep one from poverty.

In recent years however in the light of global warming, climate change and sustainability this philosophy has expanded into the concept of ‘Zero Waste’, which has emerged as a key solution for a low-carbon economy. It represents a shared vision for the future that’s good for people, the planet and profits.

The popular concept of Zero Waste refers to the elimination and management of wastes and calls for wastes to be treated as valuable resources. It is a philosophy that encourages the redesign of resource life cycles so that all products are reused and little or no trash is sent to landfills and incinerators. But as we explore further in this article, we shall see that this is a ‘narrow’ interpretation of this concept which leads to limitations. Continue reading Piercing the Veil of Zero Waste: What does it (really) mean for the Palm Oil Industry?

The Air-Void, a ‘drop-in-place’ retrofit solution for air-free sterilisation

Inefficient air removal – the culprit.

horizontal-steriliser
Steam management and boiler operational issues at palm oil mills continue to remain problematic and have yet to be satisfactorily resolved. The root cause can be traced to the inefficient method of air removal at the steriliser station.

Inefficient usage of process steam arising from using outdated and inefficient methods to evacuate residual air in the steriliser vessels is the main cause of unrelenting problems at palm oil mills, particularly those affecting boiler operation – currently widespread at palm oil mills.

The Air-Void® has been created specifically to solve the above-mentioned problem. Continue reading The Air-Void, a ‘drop-in-place’ retrofit solution for air-free sterilisation

New Technological Innovation to Drive Efficiency, Creativity and Profitability at Palm Oil Mills

The Dream Mill

palm-oil-mill-engineer
Can life for palm oil mill Managers and Engineers be (ever) made ‘easy’? Actually, yes. With a solution that is both easy and simple. Just picture this… managers and engineers focusing on mill processes and production matters rather than tending to persistent mill utility issues, thereby enriching their daily working life and enhancing the core business of their company.

Today, technological innovation has given a boost to palm oil mill operations. New technologies are available to re-engineer the design of existing palm oil extraction processes to achieve the above. Continue reading New Technological Innovation to Drive Efficiency, Creativity and Profitability at Palm Oil Mills

Re-engineering palm oil mills into centres of energy efficiency

Palm oil mills can unleash renewable energy at enormously high energy efficiency levels arising from the unique characteristics of their operating parameters.

Palm oil mills are in an enviable position to harness increased quantities of renewable energy at very high efficiencies, the potential of which remains largely unrealised.

At the moment, palm oil mills tend to focus on milling operations. They are predominantly concerned with the core business revolving around the processing of fresh fruit bunches (FFB) and oil extraction rates. However, a new premise envisions mills operating as centres of energy efficiency.

The bulk of the FFB mass from the field transported to the mill for processing is discharged as biomass residue. Of this residue, the energy content of the mesocarp fibre and palm kernel shells are being used in inefficient ways to provide the energy needs of the mill. In actual fact, the extraction and utilisation of renewable energy inherent in the fibre and shells can be harnessed at high efficencies to meet not only the energy needs of the mill but yield abundant surplus clean energy for other use. Optimising the harnessing of the renewable energy at the mill serves to reduce the carbon dioxide (CO2) emissions of palm oil production, and hence its carbon footprint. Continue reading Re-engineering palm oil mills into centres of energy efficiency

Re-ingeniería Molinos de Aceite de Palma en Centros de Eficiencia Energética

Molinos de aceite de palma pueden dar rienda suelta a las energías renovables en niveles altísimos de eficiencia energética derivados de las características únicas de sus parámetros de funcionamiento.

Molinos de aceite de palma están en una posición envidiable para aprovechar la energía renovable a muy altas eficiencias, el potencial de que sigue siendo en gran parte no realizada.

Molinos de aceite de palma en general, tienden a centrarse en las operaciones de fresado. Son predominantemente preocupado con la actividad principal gira en torno a la transformación de los Racimos de Fruta Fresca (RFF) y las tasas de extracción de aceite.  Sin embargo hay una nueva premisa de que prevé molinos para operar como centros de eficiencia energética.

Molinos de aceite de palma descargan grandes cantidades de biomasa, que es generalmente considerada como un producto de desecho. La mayor parte de la masa RFF desde el campo transportado al molino para el procesamiento se descarga como residuo de biomasa. Este residuo proporciona una rica fuente de abundante energía renovable si se las orienta a altas eficiencias. Sin embargo, en la actualidad la energía potencial inherente no es ni completamente apreciado ni explotada de una manera apropiada. Optimizar el aprovechamiento de la energía renovable reduce el dióxido de carbono (CO2) de la producción de aceite de palma, y de ahí su huella de carbono. Continue reading Re-ingeniería Molinos de Aceite de Palma en Centros de Eficiencia Energética

Merekayasa ulang Pabrik Kelapa Sawit Menjadi Pusat Efisiensi Energi

Pabrik Kelapa Sawit dapat menghasilkan energi terbarukan dengan tingkat efisiensi yang luar biasa besar timbul dari karakteristik unik dari parameter operasinya.

Pabrik kelapa sawit (PKS) berada pada posisi yang menguntungkan untuk memanfaatkan energi terbarukan dengan efisiensi yang sangat tinggi, potensi yang sebagian besar masih belum direalisasi.

PKS umumnya cenderung fokus pada operasi pengolahan. Pada umumnya perhatian mereka ada pada seputaran mengolah tandan buah segar (TBS) dan rendemen minyak. Namun ada kenyataan baru yang menyatakan bahwa pabrik kelapa sawit dapat beroperasi sebagai pusat efisiensi energi.

PKS menghasilkan sejumlah besar biomassa, yang umumnya dianggap sebagai limbah. Sebagian besar massa TBS yang diangkut dari lapangan diolah di PKS dihasilkan sebagai sisa produksi (biomassa).

Sisa ini mengandung sumber energi terbarukan yang melimpah jika dimanfaatkan dengan efisiensi tinggi. Namun, saat ini potensi energi yang ada pada biomass tersebut belum sepenuhnya dihargai atau dimanfaatkan dengan cara yang tepat. Pemanfaratan energi terbarukan secara optimal dapat mengurangi emisi karbon dioksida (CO2) produksi minyak kelapa sawit, dan juga jejak karbonnya. Continue reading Merekayasa ulang Pabrik Kelapa Sawit Menjadi Pusat Efisiensi Energi

Surprise blessings from Climate Change challenges – for the image of, and new opportunities for, the Palm Oil industry

The new blessings of climate change for the palm oil industry.

Climate change mitigation measures are bringing surprising new opportunities and benefits to the palm oil industry – strengthening the bottom line and nudging it towards a more positive image.

Although climate change supporters continue to highlight the shortcomings regarding practices of the palm oil industry this has not deterred the world demand for palm oil from growing. Ironically today it is the same “climate change” call, that has surprisingly turned the industry into a beacon of hope. Among a barrage of measures climate change is driving, one is for traditional fuels to be replaced, at least partially, by biofuels as a source of clean energy to reduce carbon emissions. And it is this growing world demand for biofuels that has today made the world realise that the palm oil industry is not all bad news. Nay, it may well hold an important key to combat global warming. Continue reading Surprise blessings from Climate Change challenges – for the image of, and new opportunities for, the Palm Oil industry

Palm Oil Mills, in the Perspective of National Resource Efficiency

 

Biomass Residue and Renewable Energy, Resource Efficiency at Palm Oil Mills

palm oil mill Apart from palm oil, biomass residue and the renewable energy derived therefrom are among two important products, sometimes overlooked, of palm oil mills in the oil palm industry. It is imperative that palm oil mills are recognised in the context of national resource efficiency for efficient utilisation of these products in order to maximise their contribution to the industry and national economy.

Despite the energy-efficient cogeneration technology currently employed at palm oil mills, most of the prime biomass residues at palm oil mills is presently consumed merely to provide heat and power to its processes. A truly energy-efficient design of a palm oil mill incorporating readily available innovative technologies can reduce its biomass residue consumption to less than half of the present consumption. The biomass thusly saved could be utilised elsewhere for useful purposes. In addition to large quantities of surplus prime biomass conserved at the mill for export, surplus electricity can be more efficiently generated within the mill for export to the grid, where grid access is available. Continue reading Palm Oil Mills, in the Perspective of National Resource Efficiency

National Policies on Renewable Energy Utilisation and Abatement of Global Warming

Malaysia’s Policies on Renewable Energy and Global Warming that Went Awry

sustainable energy

The Fifth-Fuel Policy under the Eight Malaysia Plan (2001- 2005) identified renewable energy sources as the fifth-fuel to be included into the national energy mix and more specifically, biomass residue from the palm oil mills as a major renewable energy resource. The policy pushed for optimising the use of renewable energy resources as a way to achieve maximum reduction of carbon emissions in the atmosphere. The fifth-fuel policy delved further to encourage co-generation as a suitable method to extract electricity and usable heat from biomass resources, mainly for in-house consumption. In this respect, the implementation of the policy faulted on two accounts:

  1. Firstly, by narrowly interpreting the policy direction as renewable for electricity generation the other important aspect, i.e. the simultaneous production of usable heat for in-house use was disregarded; and
  2. As a result of (1) above, standalone biomass-based power plants incinerating empty fruit bunches (EFB) remains from palm oil mills were promoted. This led to the second neglect, namely, prime biomass resource in the palm oil mills, which comprises mesocarp fibre and palm kernel shell that has tremendous renewable energy potential. The neglect of this prime biomass resource continues till today resulting in leaving their inherent renewable energy potential largely underutilised.

A downside to the two neglects mentioned above is that the standalone-small-scale-low-efficiency-electricity-only power plants burning empty fruit bunches, as forecast, demonstrated to be financially not viable and this unattractive economics continues to hamper biomass renewable energy development in Malaysia till today.
Continue reading National Policies on Renewable Energy Utilisation and Abatement of Global Warming

Selection of Sterilizer Technology for Energy Efficient Operation of Palm Oil Mills

Sterilizer Technology Affects the Overall Energy Efficiency of Palm Oil Mills

The type of sterilizer technology utilised greatly affects steam and power consumption for, and efficiency of, the sterilization process. With the growing demand for energy efficiency at palm oil mills, the selection of sterilizer is based mainly on its relevance to steam and power consumption because this will influence the overall energy efficiency of the palm oil extraction process.

palm-oil-mill-energy-efficiency

The efficient use of energy at a palm oil mill is a major factor that reduces the carbon footprint of palm oil and impact on global warming trends and thus helps prevent climate changes. Utilizing biomass residues generated from the palm oil production process for its energy yield efficiently and productively further determines carbon emissions levels and the sustainability of palm oil production. Continue reading Selection of Sterilizer Technology for Energy Efficient Operation of Palm Oil Mills